View: 6045|Reply: 30
|
LEARN TO DISPUTE MATHEMATICS
[Copy link]
|
|
Hai kengkawan... Ni thread bari akuensem, learn to dispute mathematics...
Skrg ni kte akn discover sume kesalahan dan kejatuhan2 teori matematik...
Kedgrn menakutkan, tp anda x perlu study math smpi dpt PhD ke, Prof ke utk meneliti kejatuhan teori math ni.... Budak form 1 pun leh buat...
Sekarang ni, buktikan
0 = 1
Sape yg gedik nk gune bi tu, , prove that
0 = 1
[ Last edited by aku_EnSeM at 12-4-2008 03:41 PM ] |
|
|
|
|
|
|
|
Reply #1 aku_EnSeM's post
aku belum belajar sampai tahap untuk prove yang 0=1...cikgu aku ada cakap mende ni belajar kat U... |
|
|
|
|
|
|
|
Reply #2 Urban_Iz's post
la ye ke....
xpe2, cgo ko kte blaja kt uni, kite blaja kt porum... |
|
|
|
|
|
|
|
0 = 1... haaa tuh sos dah buktikan.... |
|
|
|
|
|
|
|
Originally posted by Raindancer at 12-4-2008 06:05 PM
apa jawapannye?:kiss:
hehehe...
utk buktikan 0=1, consider the infinite siries
S = 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 ........
we can also write it as
S = (1 - 1) + (1 - 1) + (1 - 1) + ............
S = 0
changing the position of the bracket, we have
S = 1 - (1 - 1) - (1 - 1) - (1 - 1) - ......
S = 1 - 0 - 0 - 0 - 0 - .....
S = 1
So,
0 = 1 (proven)
KEJATUHAN MATEMATIK 1:
Dalam kes tertentu, siri infiniti adalah tidak benar!!! hehehe...
|
|
|
|
|
|
|
|
Cabaran seterusnya;
buktikan -1 adalah nombor positif...
iaitu...
-1 > 0 |
|
|
|
|
|
|
|
ala, ni banyak kat wiki...
kalau proof tu betul, maknanya bukan sajer 0 = 1, tapi semua nombor sama dengan 0!
let x be a number and
Consider the infinite series of
S = x - x + x - x + x - x...
letak bracket,
S = (x - x) + (x - x) + (x - x)...
= 0
tukar tempat bracket;
S = x - (x - x) - (x - x) - (x - x)...
= x
Hence, aper2 number pun = 0.
Kesalahan dlm proof ni ialah, camner nak letak bracket kalau hujung expression math tu tak der hujung (ie. infinite)?
[ Last edited by meitantei at 12-4-2008 10:02 PM ] |
|
|
|
|
|
|
|
buktikan -1 itu positif...
consider infinite siries
S = 1 + 2 + 4 + 8 + 16 + 32 + ....
So S > 0
But
2S = 2 + 4 + 8 + 16 + 32 + .....
2S = S - 1
S = -1
But S > 0
So -1 > 0
Nice.... |
|
|
|
|
|
|
|
Next, kesalahan matematik dalam trigonometri...
Buktikan 4 = 0 menggunakan trigonometri.... |
|
|
|
|
|
|
|
Reply #10 aku_EnSeM's post
erm... soalan aku ialah, camner nak letak bracket kalau series tu takder penghujung? |
|
|
|
|
|
|
|
Reply #14 meitantei's post
klu siries tu xde penhujung, ape msalah nk letak bracket? then bracket tu pun xkn ade penghujung, and so the new expression would also be an infinite siries.... |
|
|
|
|
|
|
|
Reply #13 scidbu's post
OOPS...
scdibu ni prof math ek... mintak tunjuk ajar.... |
|
|
|
|
|
|
|
hehehe...
mulakan dengan cos^2(x) = 1 - sin^2(x) |
|
|
|
|
|
|
|
Reply #17 scidbu's post
ooo...
prof madya la ni? |
|
|
|
|
|
|
|
Kalau kes gini, bukan Matematik yang salah. Tapi CARA PEMBUKTIAN tu yang salah.. |
|
|
|
|
|
|
| |
Category: Belia & Informasi
|