View: 3621|Reply: 9
|
ADDITIONAL MATHEMATICS PROJECT WORK(F.4)
[Copy link]
|
|
ermm..nk mintak tlg ckit tunjuk ajar laa...kitorg dpt project nih dr kementerian n kena hantar be4 cuti.
ALUMINIUM CAM
The Muhibbah Company is a manufacturer of cylindrical aluminium tins. The manager plans to reduce the cost of production. The production cost is proportional to the area of the aluminium sheet used. The volume that each tin can hold is 1000cm³ (1 liter).
1)Determine the value of h, r and hence calculate the ratio of h/r when the total surface area of each tin is minimum. here h cm denotes the height and r cm the radius of the tin.
2)the top and bottom pieces of the tin of height h cm are cut from square-shaped aluminium sheets. determine the value for r, h and hence calculate the ratio h/r so that the total area of the aluminium sheets used for making the tin is minimum.
3)investigate cause where the top and buttom surface are cut from
1. equllateral triangle
2.regular hexagon
find the ratio of h/r for each case. |
|
|
|
|
|
|
|
1 ~> vol = 1000 cm³ = pi r²h
~> h = 1000/pi r²
area ~> 2 pi r² + 2(pi)rh
~> 2 pi r² + 2(pi)r²[1000/pi r²]
~> 2 pi r² + 2000/r
dA/dr ~> 4 pi r - 2000/r = 0
~> 4 pi r² = 2000
~> pi r² = 2000/4
~> pi r² = 500
~> r² = 500/ pi
~> r² = 159.15
~> r = 12.615cm# <~ saya rasa jwpn nih x logik coz h akan = 2cm
* silap kat mana eyk? |
|
|
|
|
|
|
|
1 ~> vol = 1000 cm³ = pi r²h
~> h = 1000/pi r²
area ~> 2 pi r² + 2(pi)rh
~> 2 pi r² + 2(pi)r[1000/pi r²]
~> 2 pi r² + 2000/r
dA/dr ~> 4 pi r - 2000/r = 0
~> 4 pi r² = 2000
~> pi r² = 2000/4
~> pi r² = 500
~> r² = 500/ pi
~> r² = 159.15
~> r = 12.615cm# <~ saya rasa jwpn nih x logik coz h akan = 2cm
* silap kat mana eyk?
kan sepatutnya dA/dr = 4*pi*r - 2000/r2 |
|
|
|
|
|
|
|
dA/dr = (4πr) - (2000/r^2 )
Utk nilai permukaan yg minimum, dA/dr = 0
(4πr) - (2000/r^2 ) = 0
(4πr) = (2000/r^2)
πr^3 = 500
r = 3√(500/π ) <---------------(punca kuasa tiga bag nilai 500/n)
r = 5.419 cm
EDIT: Simbol kuasa dua & kuasa tiga tak keluar.
[ Last edited by MACD at 30-10-2006 09:00 PM ] |
Rate
-
1
View Rating Log
-
|
|
|
|
|
|
|
wokeh fhm. teng kiyu...
ni btol x?
2)
~> v = 4r²h = 1000cm³
~> A = 2(4r²) + h(8r)
= 8r² + 8rh
~> h = 1000/4r²
~> dA/dr = 16r - 2000/r² = 0
16r = 2000/r²
16r³ = 2000
r³ = 2000/16 = 125
r = 5 (cube root)
~> h = 1000/4r²
~> h = 1000/100
~> h = 10 |
|
|
|
|
|
|
PuteraSantubong This user has been deleted
|
Originally posted by shada at 30-10-2006 10:04 PM
wokeh fhm. teng kiyu...
ni btol x?
2)
~> v = 4r²h = 1000cm³
~> A = 2(4r²) + h(8r)
= 8r² + 8rh
~> h = 1000/4r²
~> dA/dr = 16r - 2000/r² = ...
How come dA/dr=0 ??? u just assume or ini problem pasal apa? |
|
|
|
|
|
|
|
Reply #6 PuteraSantubong's post
dA/dr = 0 sbb total surface of tin is minimum. |
|
|
|
|
|
|
|
the sheep pen nyer jwpn ade x? |
|
|
|
|
|
|
|
erk...
nape aku x dpt?
*jelesnye aku tgk ketereran ko* |
|
|
|
|
|
|
|
ar. herie belum siap lagi kerje +maths tu...... pening gak ar kepala... tetambah bila guna method calculus.:geram: |
|
|
|
|
|
|
| |
Category: Belia & Informasi
|