View: 3558|Reply: 4
|
Kontroversi mengenai Sains Dulu dan Sekarang
[Copy link]
|
|
Post Last Edit by dauswq at 25-10-2011 11:13
Science—especially the science behind climate change—is under fire. The climate issue has sparked a vigorous, and at times surreal, public debate that seems to pit experts against one another on even the most basic facts, such as whether human greenhouse gas emissions dominate natural ones, whether added carbon dioxide alters the planetary emission of thermal radiation to space, and whether global temperatures are rising.1 At its heart, global warming is a physics problem, albeit a messy one that cannot proceed far without bringing in meteorology, oceanography, and geology. (See the article by Raymond Pierrehumbert in PHYSICS TODAY, January 2011, page 33 .) The climate debate has spread far beyond the confines of any of those scientific circles and into the media and public sphere, where politicization and vitriol are legion.
Although nearly all experts accept that the greenhouse gases emitted by humans have caused significant warming to the planet and will likely cause much more, only about half the US public agrees, even after years of heavy media coverage. How did we get into such a mess? What are the implications for science, for how it should be communicated, and for how debates should be interpreted? Some insights may be gained by noting that global warming is not the first “inconvenient truth” in physics. Consider this description of another, bygone debate:
The decision [whether to accept the new theory] was not exclusively, or even primarily, a matter for astronomers, and as the debate spread from astronomical circles it became tumultuous in the extreme. To most of those who were not concerned with the detailed study of celestial motions, Copernicus’s innovation seemed absurd and impious. Even when understood, the vaunted harmonies seemed no evidence at all. The resulting clamor was widespread, vocal, and bitter.
Thus does science historian Thomas Kuhn describe the difficulties experienced by astronomers in convincing the public of the heliocentric theory of the solar system, which ultimately ushered in the scientific revolution. The “clamor” prevailed around the time of Galileo Galilei, more than a half century after Nicolaus Copernicus, on his deathbed, published the heliocentric model in 1543.
Copernicus’s calculations surpassed all others in their ability to describe the observed courses of the planets, and they were based on a far simpler conception. Yet most people would not accept heliocentricity until two centuries after his death.
Why did it take so long? To modern minds, the Ptolemaic model of the solar system, with its nested cycles and epicycles, seems rather silly. Surely, the need for a new tweak to the model each time more accurate observations came along should have been a tip-off that something fundamental was wrong. The heliocentric model’s elegance and simplicity, on the other hand, are now appreciated as the hallmarks of credibility for a scientific theory. |
|
|
|
|
|
|
|
Paradigm shifts
It did take scientists a while, although not two centuries, to see the heliocentric model’s merit. Astronomers quietly adopted Copernicus’s calculations soon after they were published, but without at first accepting the heliocentric premise on which they were based. As young, open-minded astronomers replaced their elders, a paradigm shift toward the modern view began. By the time of Johannes Kepler’s recognition of simple elliptical orbits in 1609 (see the article by Owen Gingerich in PHYSICS TODAY, September 2011, page 50 ) and Galileo’s observations the following year, many top astronomers had converted to the Copernican view.
The revelations from Galileo’s telescope (lunar craters, migrating sunspots, planetary moons, and more), though spectacular, didn’t directly validate the heliocentric model. Instead, their most important effect was to challenge the preconceived notions that prevented the model’s acceptance: that the heavens were perfect, that all celestial objects orbited Earth, that Scripture fully described the universe (exemplified by Dante Alighieri’s conception of a geocentric divine arrangement, shown in figure 1).2 Once those errors were revealed, the mind reopened to new possibilities. Modern educators have recently realized that a similar process is important in teaching physics in the classroom: Identifying and revealing incorrect intuitions—based on, say, friction-dominated systems—is sometimes necessary before students will truly assimilate an understanding of more general validity, such as Newton’s laws of motion. (See the article by Edward Redish and Richard Steinberg in PHYSICS TODAY, January 1999, page 24 .)
Figure 1. The Copernican paradigm shattered prevailing conceptions of how God had organized the world (left, adapted from C. Singer, ed., Studies in the History and Method of Science, Clarendon Press, Oxford, UK, 1917). Popular commentators such as Jean Bodin (top right) ridiculed the idea. John Donne (bottom right) expressed deep despair over the new theory in his 1611 poem An Anatomy of the World. |
|
|
|
|
|
|
|
More astute critics such as Tycho Brahe had a legitimate objection to the Copernican theory: If Earth is moving, one should see evidence of parallax in the shifting of the stars over the course of a terrestrial orbit, and Tycho could find none. But stars in Galileo’s telescope remained point-like even under strong magnification, which suggested that they were very distant indeed, and that the parallax would therefore be unobservably small; Galileo’s observations thereby removed Tycho’s objection. (Parallax was eventually observed in 1838.)
Despite the power of the new theory and its observational successes, many people, even in the scientific community, could not relinquish the idea that the universe was built around them. Their belief was so strong that some scientists simply refused to look through Galileo’s telescope, and others invented ridiculous explanations for what it showed.2 Compromise models became popular; Tycho himself proposed that the planets orbit the Sun but maintained that the Sun and its entourage all orbit Earth. Over time such crutches fell by the wayside; Copernicus’s view was generally accepted among scientists by the late 17th century and among the public by the late 18th century.2
The progression of the global warming idea so far has been quite similar to that of Copernicanism. The idea that changes in atmospheric greenhouse gas concentrations can and do cause significant climate changes (a notion for which I will use the shorthand term “greenhouse warming”) was proposed qualitatively in 1864 by renowned physicist John Tyndall, when he discovered carbon dioxide’s opacity to IR radiation. In 1896 Nobel laureate Svante Arrhenius quantitatively predicted the warming to be caused in the future by coal burning; the prediction was tested and promoted by steam engineer Guy Callendar in the late 1930s. At first few could accept that humans were capable of influencing the climate of an entire planet, but over time, and with more calculations, scientists found the possibility increasingly difficult to dismiss.
As with Copernicanism, astute observers found legitimate objections. The 15-micron absorption of atmospheric CO2 was already largely saturated, which some argued would prevent additional CO2 from having any effect. The ocean, with its large carbon-storing capacity, seemed poised to soak up most of the human emissions. By the 1970s, however, those objections had deflated in the face of contrary evidence,3 and a growing number of papers on climate were noting the likelihood of future warming.4
Many who are unwilling to accept the full brunt of greenhouse warming have embraced a more comforting compromise reminiscent of the Tychonic system: that CO2 has some role in climate but its importance is being exaggerated. But accepting a nonzero warming effect puts one on a slippery slope: Once acknowledged, the effect must be quantified, and every legitimate method for doing so yields a significant magnitude. As the evidence sinks in, we can expect a continued, if slow, drift to full acceptance. It took both Copernicanism and greenhouse warming roughly a century to go from initial proposal to broad acceptance by the relevant scientific communities. It remains to be seen how long it will take greenhouse warming to achieve a clear public consensus; one hopes it will not take another century. |
|
|
|
|
|
|
|
Backlash and politicization
Inconvenient scientific claims also show parallels in their political progression. In the decades before Galileo began his fervent promotion of Copernicanism, the Catholic Church took an admirably philosophical view of the idea. As late as 1615, Cardinal Robert Bellarmine acknowledged that “we should . . . rather admit that we did not understand [Scripture] than declare an opinion to be false which is proved to be true.” But the very next year he officially declared Copernicanism to be false, stating that there was no evidence to support it, despite Galileo’s observations and Kepler’s calculations.2 Institutional imperatives had forced a full rejection of Copernicanism, which had become threatening precisely because of the mounting evidence.
Even Albert Einstein was not immune to political backlash. His theory of general relativity, excerpted on the notebook page in figure 2, undermined our most fundamental notions of absolute space and time, a revolution that Max Planck avowed “can only be compared with that brought about by the introduction of the Copernican world system.”5 Though the theory predicted the anomalous perihelion shift of Mercury’s orbit, it was still regarded as provisional in the years following its publication in 1916.
Fig 2.
Figure 2. The theory of relativity’s mathematical difficulty and its repudiation of bedrock concepts of space and time threatened many physicists of the day. Philipp Lenard (right), previously a strong supporter of Albert Einstein, became a harsh critic and fought the theory until his death. Others such as Ernest Rutherford (left) did not deny its validity but feared the direction in which it would take physics.16 (Center image adapted from the Albert Einstein Archives, #5-219.10, © The Hebrew University of Jerusalem.)
AIP Emilio Segrè Visual Archives |
|
|
|
|
|
|
|
When observation, by Arthur Eddington and others, of a rare solar eclipse in 1919 confirmed the bending of light, it was widely hailed and turned Einstein into a celebrity. Elated, he was finally satisfied that his theory was verified. But the following year he wrote to his mathematician collaborator Marcel Grossmann:
This world is a strange madhouse. Currently, every coachman and every waiter is debating whether relativity theory is correct. Belief in this matter depends on political party affiliation.6
Instead of quelling the debate, the confirmation of the theory and acclaim for its author had sparked an organized opposition dedicated to discrediting both theory and author. Part of the backlash came from a minority of scientists who apparently either felt sidelined or could not understand the theory. The driving force was probably professional jealousy,6but scientific opposition was greatly amplified by the anti-Semitism of the interwar period and was exploited by political and culture warriors. The same forces, together with status quo economic interests, have amplified the views of climate contrarians.7
The historical backlashes shed some light on a paradox of the current climate debate: As evidence continues to accumulate confirming longstanding warming predictions and showing how sensitive climate has been throughout Earth’s history, why does climate skepticism seem to be growing rather than shrinking? All three provocative ideas—heliocentricity, relativity, and greenhouse warming—have been, in Kuhn’s words, “destructive of an entire fabric of thought,” and have shattered notions that make us feel safe.2 That kind of change can turn people away from reason and toward emotion, especially when the ideas are pressed on them with great force.8
The agitations of modern greenhouse proponents appear to have provoked an antiscience backlash similar to the one against Galileo. In the space of only two years, almost as fast as Bellarmine changed his position on Copernicanism, leading moderates have been squeezed out of the main conservative political parties in both the US and Australia and replaced by hard-line rejecters of climate science. In Australia, climate policy was the leading issue behind the backlash; in the US it was one of many contributing factors. Because the Catholic Church of Galileo’s day had generally been a supporter of science and open inquiry, the condemnation of Copernicanism as it grew scientifically solid shocked many devout Catholics.2 Likewise, modern conservative political parties have until recently been friends of science, including climate and environmental studies. In the 1970s Republicans and Democrats in Congress were equally concerned about climate change, and as recently as 2004 leading Republicans were—at least in public—enthusiastic in their support of science. Their recent rejections of climate science have probably shocked many supporters. In both cases the backlash seems to have come when leaders were pushed to act on the basis of new evidence. (Figure 3 further illustrates the connection between economic incentives and rejection of climate science.)
Fig 3.
Figure 3. [/b]Greenhouse warming and its perceived policy implications challenge widely held libertarian ideals and provoke economic fears, as evidenced by the negative correlation between acceptance of anthropogenic climate change and coal production, especially among the wealthiest nations.17 Large dots show nations where more than 80% of survey respondents had heard “a lot” or “some” about global warming; small dots show nations where 70–80% had. The vertical axis is the percentage of respondents who agree that humans affect climate, not necessarily who accept the greenhouse theory. |
|
|
|
|
|
|
| |
Category: Belia & Informasi
|