CariDotMy

 Forgot password?
 Register

ADVERTISEMENT

Author: dauswq

[MODERATOR] ★ FUN WITH MATH : [Setiap Hari Isnin]★

[Copy link]
Post time 16-4-2012 10:41 AM | Show all posts
sy lebih kepada mathematical model development...contohnya, kalo nak kira detik water dropping, the formulation kita akan developed based on several situation...baru-baru ni, dok belajar pasal flow of product... fenin~
kelapamuda Post at 16-4-2012 10:35


Actually itupun ada kaitan ODE,
flow .... lagi la ODE.... sebab tu penin kot...???
Reply

Use magic Report


ADVERTISEMENT


Post time 16-4-2012 10:43 AM | Show all posts
kuasa~~ x and x^2...kalo integrate dia akan berubah kuasa kan?  lupoooo...
kelapamuda Post at 16-4-2012 10:37


Belum lagi integrate, kena kenal dulu yang mana dependent, yang mana independent... order... degree of ODE....
Reply

Use magic Report

Post time 16-4-2012 10:44 AM | Show all posts
Actually itupun ada kaitan ODE,
flow .... lagi la ODE.... sebab tu penin kot...???
mnm77 Post at 16-4-2012 10:41



    flow of product is more likely a bottleneck/interruption along the process... camne plak ODE ley dikaitkan ye cekgu?
Reply

Use magic Report

Post time 16-4-2012 11:00 AM | Show all posts
flow of product is more likely a bottleneck/interruption along the process... camne plak O ...
kelapamuda Post at 16-4-2012 10:44


Flow melibatkan rate of change of location of fluid, per unit time, tentunya ODE

Boleh explain situasi tu?
Reply

Use magic Report

Post time 16-4-2012 11:07 AM | Show all posts
Flow melibatkan rate of change of location of fluid, per unit time, tentunya ODE

Boleh explai ...
mnm77 Post at 16-4-2012 11:00



    product flow contohnya...if the service is interrupted..macam kes bangkok banjir..kan supply chain terganggu...dari boleh serve customer dlm 30000 pair of shoes per day, terus jadi 300 per day...

most of these research are combined with several area, such as, business+mathematics, art+maths..etc.etc..

rasanya en.mnm77, kita di page yg belainan..ada dua jenis general model; yakni, data model and derived model...
sy ni page data model... .. <--maths paling lemah and tak pemes

ODE is derived model, several area includes in ODE such as industrial maths...heat transfer...fluid flow, such as nuklear di japan..radioaktif punya denyutan...berapa kuatkan sbelum ianya meledak.. <--- ni tak berapa sure..hehehe...
Reply

Use magic Report

Post time 16-4-2012 11:14 AM | Show all posts
Reply 225# kelapamuda

Mungkin betul..... kalau kelapamuda buat empirical model, berdasarkan data, bukan derivation

Tapi empirical model ni macam neural network, kena ada banyak data (tersangatlah) baru reliable, sebab ia lebih black box approach. Itulah kelemahan model tu (bukan saya kata takleh pakai langsung)
Reply

Use magic Report

Follow Us
Post time 16-4-2012 11:17 AM | Show all posts
Reply  kelapamuda

Mungkin betul..... kalau kelapamuda buat empirical model, berdasarkan data, bu ...
mnm77 Post at 16-4-2012 11:14



    yup...betul..its only dependable in some situation but not all...however, it can be changed accordingly..differs ngn ODE/derived model..sgt bagus and kukuh...sy nak belajar pure maths...!
Reply

Use magic Report

Post time 16-4-2012 01:06 PM | Show all posts
salam smue...

untuk makluman, kami semakin sibuk kebelakangan ni.. masa sangat terhad untuk berforum..
jadi kuiz FUN WITH MATH  ni kami berhentikan buat sementara waktu.. dan akan diberitahu kembali bile bermula semula..
maaf atas segala kesulitan..


untuk perbincangan berkenaan dengan matematik boleh disambung di sini..
Reply

Use magic Report


ADVERTISEMENT


Post time 16-4-2012 01:58 PM | Show all posts
For differential equation with independent variable x:

1) y" + 3y' + 2y = x2 + cos x

2) y ...
mnm77 Post at 15-4-2012 15:05



- ODE yang linear boleh ditulis dlm bentuk
- terbitan y mesti linear, tidak mempunyai sebarang kuasa atau hasil darab.  


1) y" + 3y' + 2y = x2 + cos x
y'', y' dan y adalah linear. jd DE adalah linear


2) y'' + 3y' + 2y = 5x + cos y
term cos y tak linear, jd DE non-linear.


sy masih bljr lg.. kalau salah mintak tlg tunjukkan..
Reply

Use magic Report

Post time 16-4-2012 02:01 PM | Show all posts
continue...
Lesson 2: Linearity of ODE
4. ODE is linear if the degree of ODE is 1, does not depend ...
mnm77 Post at 16-4-2012 10:33



   laaa... dh ade jawapan rupenye...
Reply

Use magic Report

Post time 16-4-2012 02:36 PM | Show all posts
Post Last Edit by mnm77 at 16-4-2012 17:58
1) y" + 3y' + 2y = x2 + cos x
y'', y' dan y adalah linear. jd DE adalah linear


2) y'' + 3y' + 2y = 5x + cos y
term cos y tak linear, jd DE non-linear.

midory Post at 16-4-2012 13:58



Ye betul.... (sorry tak dapat bagi credit sebab bukan mod.. )

- terbitan y mesti linear, tidak mempunyai sebarang kuasa atau hasil darab


Satu point yang saya terlepas untuk sampaikan (thanks for sharing):
ODE is linear if:
- The degree of ODE is 1 with respect to dependent variable as well as to any of its derivatives (meaning the power of dependent variable as well as the derivatives are all equivalent to 1),
- There should be no product of dependent variable with its derivatives.
- The non-linearity of ODE  does not depend on the degree of independent variable (x).

   
Example:
(dy/dx)y + y = x + 1   (1st Order ODE)

Non-linear sebab ada hasil darab antara y (dependent variable) dengan terbitannya (derivative: dy/dx)
Reply

Use magic Report

Post time 16-4-2012 02:43 PM | Show all posts
Salam...

Ok just sharing knowledge, hopefully beneficial for those who interested in calculus ...
mnm77 Post at 13-4-2012 16:32



   en. mnm77,
utk D operator tu sy tak belajar lg..
tp sy bljr sendiri n tgk solution yg mnm bg pd soalan 10 tu..



yg ni darab x pd term yg dibahagi dengan kosong dan differetiate denominator..





D operator ade 3 rule mcm kat atas tu aje ke?
utk yg rule ke 3 tu, mcm mane pulak kalau x sin ax / e^x sin x? masih boleh diselesaikan gune D operator tak?

mohon tunjukkan..
Reply

Use magic Report

Post time 16-4-2012 02:48 PM | Show all posts
Ye betul.... (sorry tak dapat bagi credit sebab bukan mod.. )



Satu point yang saya ...
mnm77 Post at 16-4-2012 14:36



   takpe.. janji kite dpt kongsi knowledge..
Reply

Use magic Report

Post time 16-4-2012 02:59 PM | Show all posts
heheheh...sy tak menjurus kepada ODE..sbb tu tak fimiliar...yg garis lurus tu..hahahaha... ...
kelapamuda Post at 16-4-2012 10:35



   kalau pasal flow tu dh masuk ODE...
Reply

Use magic Report

Post time 16-4-2012 03:22 PM | Show all posts
Post Last Edit by mnm77 at 16-4-2012 17:26
D operator ade 3 rule mcm kat atas tu aje ke?
utk yg rule ke 3 tu, mcm mane pulak kalau x sin ax / e^x sin x? masih boleh diselesaikan gune D operator tak?

mohon tunjukkan..
midory Post at 16-4-2012 14:43


Salam...

Operator D ada beberapa rules/theorem, yang mana bila kita menggunakan teorem tersebut, Operator D Method menjadi kaedah jalan pintas yang agak berkesan dah memudahkan (bukan untuk semua kes).

Properties:
Rules D{...}  = differentiate
Rules 1/D{...}  =  integrate

3 theorems (rules) as mentioned above.
+ Special case (contoh soalan 10)

Selain dari 3 teorem di atas, maknanya kita akan menghadapi kesukaran dalam menggunakan Operator D method. Sama seperti undetermined coefficient, operator D juga ada limitations kerana berfungsi kepada exponential, polynomial, sine & cosine terms, and limited product between these functions (as in the above theorems). Kalau ada logarithmic function, atau products between those function apart of the theorems, maka akan tersangkut kalau nak guna Operator D.

Variation of Parameter lebih universal, but at the expense of more work to do. Disadvantage: variation of Parameter mungkin menyebabkan kita sangkut jika integration susah. Kalau integration tak boleh buat, maka sangkut juga. Certain case memang tak boleh integrate, jadi boleh dikatakan tak semua ODE ada penyelesaiannya. Namun, boleh jadi ada penyelesaiannya cuma tak boleh nak dapat, atau amat susah!
(sorry guna bahasa rojak, lebih senang explain dalam English, tapi cuba menyesuaikan untuk BM)

Ok, bagi kes:

1) x sin ax
2) e^x sin x

Untuk soalan (2), boleh guna Theorem 2, di mana 'phi' φ tu merupakan fungsi x, boleh diganti φ(x) = sin ax (a=1), kemudian guna Theorem 3 pula untuk selesaikan sin x (kena ada D&#178; baru boleh guna Theorem 3)

Untuk (1), saya rasa macam tak boleh guna Operator D. Kalau kita boleh convert x in terms of exponential of power x, then baru boleh guna. Kalau nak try: e^(ln x) sin ax

Masih problem sebab ada ln x kat situ pula.

Rate

1

View Rating Log

Reply

Use magic Report

Post time 16-4-2012 10:18 PM | Show all posts
kalau pasal flow tu dh masuk ODE...
midory Post at 16-4-2012 14:59



   not necessarily....depends on what flow yang kita bincangkan...flow juga bermaksud perjalanan..arus...kat atas2 tadi rasanya da dibincangkan...
Reply

Use magic Report


ADVERTISEMENT


Post time 21-4-2012 03:55 PM | Show all posts
Salam...

Operator D ada beberapa rules/theorem, yang mana bila kita menggunakan teorem terseb ...
mnm77 Post at 16-4-2012 15:22



   tq mnm utk explanation...
Reply

Use magic Report

 Author| Post time 30-3-2013 01:47 AM | Show all posts
kenangan sungguh thread ni...

klu ade sesiapa nak request mod teruskan, sila bgth ya...tp as long as we are not busy haha
Reply

Use magic Report

Post time 12-5-2013 08:07 PM | Show all posts
dauswq posted on 30-3-2013 01:47 AM
kenangan sungguh thread ni...

klu ade sesiapa nak request mod teruskan, sila bgth ya...tp as lo ...

up balik thread lama...
nak request mod teruskan kuiz ni...
kalau tak dpt buat kerap macam last year pun takpe...
sebulan kalau dpt buat 2 kuiz pun ok dah...
Reply

Use magic Report

 Author| Post time 12-5-2013 08:13 PM | Show all posts
lavender_aqua posted on 12-5-2013 08:07 PM
up balik thread lama...
nak request mod teruskan kuiz ni...
kalau tak dpt buat kerap macam last  ...

nak kena tanya sekali my co-mod @midory
selalu kiteorg gilir2 buat
Reply

Use magic Report

You have to log in before you can reply Login | Register

Points Rules

 

ADVERTISEMENT



 

ADVERTISEMENT


 


ADVERTISEMENT
Follow Us

ADVERTISEMENT


Mobile|Archiver|Mobile*default|About Us|CariDotMy

29-11-2024 09:09 AM GMT+8 , Processed in 0.078832 second(s), 33 queries , Gzip On, Redis On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

Quick Reply To Top Return to the list