|
[MODERATOR]
★ FUN WITH MATH : [Setiap Hari Isnin]★
[Copy link]
|
|
lama benar tak buat math ... tapi nak tanya lah kan ... jawapan utk (a) AB= 2 cm ker? , kalau ikut p ...
soebyuk Post at 28-2-2012 16:50
letak la sini jalan kerjanye... |
|
|
|
|
|
|
|
nak cuba jawab gak tapi xtau nk start dari mana
adikmanis Post at 28-2-2012 18:17
adikmanis boleh pm kami kalau perlukan hint.. |
|
|
|
|
|
|
|
Post Last Edit by soebyuk at 28-2-2012 22:14
-----edited------------- |
|
|
|
|
|
|
|
nak try tapi sori xde picture..
a) draw an imaginary line of AC,
<BAC = <BOC = 60'
<ACB = <AOB = 45'
using sine rule, (sin a)/A = (sin b)/B
hence, (sin 60')/sqrt (6) = (sin 45')/AB
solve, AB = 2cm
b) general equation for area of triangle = (1/2)ab(sinC) [c is the angle between a and b]
for triangle OCB, we consider a=sqrt(6), b=OB and C=<OBC
the area is (1/2)(sqrt6)(OB)sin(<OBC)
for triangle OAB, we consider a=2, b=OB and C=<OBA
the area is (1/2)(2)(OB)sin(<OBA)
solve simultaneously, area of OBC / area of OAB = (sqrt6)/2 * (sin <OBC)/(sin <OBA) [proven]
can i skip question c? harap2 mod faham explanation AM ni |
Rate
-
1
View Rating Log
-
|
|
|
|
|
|
|
Reply 26# adikmanis
takpe AM... kami akan nilai mane yg AM jawab aje... |
|
|
|
|
|
|
|
PENYELESAIAN
Gunakan petua sines segitiga. Bahagikan kedua-dua persamaan untuk mematikan OB.
(A)
( AB/OB = sin a/sin b ) / ( BC/OB = sin d/sin c )
=> AB/BC = sin a/sin b * sin c/sin d
AB/BC = sin a/sin b * sin (180-b)/sin d kerana b+c = 180 iaitu 2 sudut yang bertentangan dalam bulatan.
AB/BC = sin a/sin b * sin (180-b)/sin d sin (180-b) = sin (b)
maka AB/BC = sin a/sin d
masukkan nilai a = 45' , d = 60' dan BC = 6^(1/2) cm
AB = sin 45/sin 60 * Sqrt(6) = 1/Sqrt (2) / {Sqrt(3)/2} * Sqrt(6) = Sqrt (4 *6 /(2*3) ) = 2 cm
Panjang AB adalah 2 cm.
(B)
(Luas segitiga OCB) / (luas segitiga OAB)
= (1/2 *OB * OC* sin d )/ (1/2 *OB * OA* sin a )
= (OC* sin d )/ (OA* sin a )
= (OC/OA ) * ( sin d /sin a)
Dari petua sines segitiga, bahagikan persamaan berikut.....
OC = sin <OBC /sin d * BC
OA = sin <OBA /sin a * AB
Oleh itu, (Luas segitiga OCB) / (luas segitiga OAB)
= (OC/OA ) * ( sin d /sin a)
= OC = sin <OBC * BC
OA = sin <OBA * AB
= Sqrt(6) / 2 * (sin<OBC/sin<OBA)
(C)
Apabila garis OB melalui pusat bulatan, sudut <OAB = sudut <OCB = 90
Maka, sudut <OBA dan sudut <OBC masing-masing adalah 45 dan 30. Jadi, OA = 2 dan OC = Sqrt(2)
Gunakan teorem pytaghoras, OB adalah 2*Sqrt(2).
Oleh sebab garis OB melalui pusat bulatan, maka diameter = 2*Sqrt(2).
Luas bulatan = pi * (2*Sqrt(2) /2 ) ^2 = 2*pi
Nisbah Luas segitiga OCB kepada Luas segitiga OAB = Sqrt(3)/2
Luas segiempat OABC
= Luas segitiga OCB + luas segitiga OAB
= Sqrt(3) /2 * luas segitiga OAB +Luas segitiga OCB
=( 1+ Sqrt(3) /2 ) Luas segitiga OCB
=( 1+ Sqrt(3) /2 ) {1/2 * 2 * 2 }
= 2+ Sqrt(3)
Nisbah luas bulatan kepada segiempat OABC
= Luas bulatan
Luas segiempat OABC
= 2*pi / (2+ Sqrt(3) )
={ 2- Sqrt(3) } *2*pi / (2+ Sqrt(3) )
2- Sqrt(3)
= 2*(2- Sqrt (3))* pi atau 1.683574 |
|
|
|
|
|
|
|
Post Last Edit by dauswq at 29-2-2012 10:17
Tahap soalan akan diberitahu sebaik sahaja soalan ditutup. Ia berdasarkan kecemerlangan pelajar yang menjawab soalan tersebut....Selain itu, ia penting untuk kami menentukan berapa banyak kredit perlu diberi
Aku rate ikut kategori tertentu,
nak tahu apa maksudnya?
korang boleh boleh dirujuk di muka depan
|
|
|
|
|
|
|
|
tq momod! i had fun buat matematik nih..rasa bgerak balik otak yg ala2 bkarat ni... |
|
|
|
|
|
|
|
★ FUN WITH MATH : Minggu Kalkulus [Setiap Hari Isnin]★
|
|
|
|
|
|
|
Post Last Edit by kelapamuda at 5-3-2012 12:47
soalan 2(i)
by the way, aku rasa aku ada careless, sbb aku mmg cuai..
no 1 aku ragu2 la...itu soalan ODE kan? ke partial ea? |
|
|
|
|
|
|
|
soalan 2(i)
by the way, aku rasa aku ada careless, sbb aku mmg cuai..
no 1 aku ...
kelapamuda Post at 5-3-2012 11:11
kelapa.. cube bace balik utk penyelesaian tu last tu..
yg no 1 tu ode.. |
|
|
|
|
|
|
|
Reply 4# midory
dah macam belajar Fizik la pulak.. |
|
|
|
|
|
|
|
Reply midory
dah macam belajar Fizik la pulak..
lavender_aqua Post at 5-3-2012 12:35
haha.. campur... |
|
|
|
|
|
|
|
Post Last Edit by kelapamuda at 5-3-2012 12:47
kelapa.. cube bace balik utk penyelesaian tu last tu..
yg no 1 tu ode..
midory Post at 5-3-2012 11:22
ehehhe...aku malas nak check...boleh tak??
ni no (2) sambungan...
|
Rate
-
1
View Rating Log
-
|
|
|
|
|
|
|
Post Last Edit by mnm77 at 5-3-2012 15:20
1. Pereputan radioaktif carbon-14 diberikan dalam persamaan pembezaan berikut:
di mana Q ialah kuantiti carbon-14 yang terhasil manakala dQ/dt ialah kadar perubahan kuantiti.
Jika 10% daripada kuantiti radioaktif carbon-14 dijumpai dalam tulang manusia yang dikorek di kawasan arkeologi, hitung usia tulang tersebut.
dauswq Post at 5-3-2012 08:27
Question 6
=======
1. Given an ODE in the form: dQ/dt = -kQ
where k = 0.0001238
The above ODE can be solved through separating the variables:
dQ/Q = -k dt
Integrate both sides:
∫1/Q dQ = ∫-k dt
ln Q = -kt + c
Q = exp(-kt + c) = exp(-kt)⋅exp(c)
Q = A⋅exp(-kt) [let constant A = exp(c)]
Let initial t = t₀ when Q = Q₀ (initial quantity)
Hence at time = t₀:
Q₀ = A⋅exp(-kt₀) --------(1)
Denoting t = t₁ at the time where Q = Q₁ = 0.1Q₀
0.1Q₀ = A⋅exp(-kt₁) ----(2)
(1) divide (2):
10 = exp(-kt₀) / exp(-kt₁)
So:
10exp(-kt₁) = exp(-kt₀)
Taking logarithm both sides:
ln 10 - kt₁ = - kt₀
Rearrange:
t₁ - t₀ = (ln 10)/k = 18 599 years
(since the question did not mention unit of time, and normally radioactive decay of carbon isotopes are measured in years, hence the measured time is assumed in years)
...break for SOLAT ZUHUR.....
continue....
2. persamaan pembezaan untuk tindakbalas kimia yang menghubungkan kuantiti bahan, x dengan masa, t
yang mana k, a dan b adalah pemalar yang positif dan x=0 bila t=0
dapatkan penyelesaian utk x sebagai fungsi t dlm kes tersebut :
2. Separate the variables:
dx
--------------- = k dt
(a-x)(b-x)
Integrate both sides:
dx
∫----------- = ∫ k dt
(1- x)²
1
------------- = kt + c -----(1)
(-1)(1- x)
Given IC: x = 0 when t = 0, into (1)
Hence c = -1
Thus
1
------------- = kt - 1
(-1)(1- x)
1
x = ------------- + 1
kt - 1
2. ii)
Hence:
dx
---------------- = k dt ------- (2)
(1- x)(2- x)
Rules from Partial Fraction:
1 A B
---------------- ≡ ------- + ---------
(1- x)(2- x) (1- x) (2- x)
Solving the identity of the numerator:
1 ≡ A(2- x) + B(1- x)
Let x = 1: 1 = A => A =1
x = 2: 1 = - B => B = -1
Hence LHS of eq (2) becomes:
dx 1 1
--------------- ≡ --------- - --------- dx
(1- x)(2- x) (1- x) (2- x)
Integrate LHS & RHS gives:
| 1 1 |
∫ | -------- - -------- | dx = ∫ k dt
| (1- x) (2- x) |
-ln (1-x) + ln (2 - x) = kt + c
ln (2-x)/(1-x) = kt + c
IC: x = 0, t = 0
c = ln 2
Hence:
ln (2-x)/(1-x) = kt + ln 2
= ln[exp(kt)] + ln 2
= ln [2 exp(kt)]
Thus:
(2-x)/(1-x) = 2 exp(kt)
Rearrange:
2[exp(kt) - 1]
x = -----------------
2 exp(kt) - 1
WAllahu a'lam |
Rate
-
1
View Rating Log
-
|
|
|
|
|
|
|
malas nak scan..... penat jugak taip persamaan nak bagi nampak cantik! |
|
|
|
|
|
|
|
Reply 10# mnm77
gigihnye taip... |
|
|
|
|
|
|
| |
Category: Belia & Informasi
|