CariDotMy

 Forgot password?
 Register

ADVERTISEMENT

Author: adlismel

Soalan berkaitan Matematik & Matematik Tambahan

[Copy link]
Post time 3-5-2005 03:54 PM | Show all posts
Soklan 1

2 cos x - sin x = R cos (x + a)   (so, kite nak solve for R and a)

2 cos x - sin x = R [ cos x * cos a - sin x * sin a] <-- pakai trig identity

2 cos x - sin x =  R (cos x * cos a) - R (sin x * sin a)  <-- ade dua equation kite leh dapat dari sini. first term of the left equation is a function of cos x and first term of the right equation is a function of cos x. 2nd term of the first equation is a function of sin x and the 2nd term of the right equation is a function of sin x. (R and a adalah konstant).

2 cos x = R (cos x * cos a) .... (1)
-sin x = -R (sin x * sin a) .... (2)


from equation (1)
cancel cos x from each side of the equation
2= R cos a
R = 2/cos a
Reply

Use magic Report


ADVERTISEMENT


Post time 3-5-2005 05:07 PM | Show all posts
sape boleh ajar index?
Reply

Use magic Report

Post time 3-5-2005 06:36 PM | Show all posts
Originally posted by Robab at 3-5-2005 05:07 PM:
sape boleh ajar index?



Errr... kalau ko ada soalan ttg index, post la kat sini. Kita bincang ramai2...
Reply

Use magic Report

 Author| Post time 4-5-2005 05:00 PM | Show all posts
Cuba try jawap soalan index ini

Selesaikan

1. 2^x - 1/16^x = 0
Reply

Use magic Report

 Author| Post time 4-5-2005 05:06 PM | Show all posts
Originally posted by BeanDiesel at 5/2005/3 03:54 PM:
Soklan 1

2 cos x - sin x = R cos (x + a)   (so, kite nak solve for R and a)

2 cos x - sin x = R [ cos x * cos a - sin x * sin a] <-- pakai trig identity

2 cos x - sin x =  R (cos x * co ...



memang aku solute kat hang :bodek:
Reply

Use magic Report

Post time 5-5-2005 06:41 AM | Show all posts
Originally posted by adlismel at 4-5-2005 05:00 PM:
Cuba try jawap soalan index ini

Selesaikan

1. 2^x - 1/16^x = 0



Cara 1

2^x - 1/16^x = 0
2^x - 2^-4x = 0
2^x = 2^-4x

Bandingkn indeks,

x=-4x
x=0

Cara 2

2^x - 1/16^x = 0
2^x - 1/2^4x = 0
2^5x - 1 = 0
2^5x = 1
2^5x = 2^0

Bandingkn indeks,

5x = 0
x = 0
Reply

Use magic Report

Follow Us
 Author| Post time 6-5-2005 10:43 AM | Show all posts
Soalan Indicex

Selesaikan Persamaan

2 * 5^x = 3^(x - 1) :hmm:
Reply

Use magic Report

Post time 6-5-2005 02:01 PM | Show all posts

-3.50758

2* 5^x = 3^(x - 1)

2* 5^x = 3^x / 3^1
           = 3^x/ 3

2* 3 = 3^x / 5^x
    6  = (3/5)^x

log(6)=log ( (3/5)^x )
        =x log (3/5)

x= log (6) / log (3/5)

x is about -3.50758.....

perhaps Satria-naga can suggest some other methods?
Reply

Use magic Report


ADVERTISEMENT


Post time 6-5-2005 05:48 PM | Show all posts
Originally posted by BeanDiesel at 6-5-2005 02:01 PM:
2* 5^x = 3^(x - 1)

2* 5^x = 3^x / 3^1
           = 3^x/ 3

2* 3 = 3^x / 5^x
    6  = (3/5)^x

log(6)=log ( (3/5)^x )
        =x log (3/5)

x= log (6) / log (3/5)

x is about -3.50758. ...



Using logarithm only (but must know the log properties)

2* 5^x = 3^(x - 1)
log 2* 5^x = log 3^(x - 1)
log 2 + log 5^x = (x - 1) log 3
log 2 + x log 5 = x log 3 - log 3
x log 3 - x log 5 = log 2 + log 3
x log (3/5) = log 6
x = log 6 / log (3/5)
x = -3.5076

P.s : Makesure check ur ans. by substituing the value of x into the given equation :bgrin:
Reply

Use magic Report

 Author| Post time 7-5-2005 04:20 PM | Show all posts
Dua
Reply

Use magic Report

Post time 7-5-2005 07:54 PM | Show all posts
Originally posted by Satria-Naga at 5-5-2005 06:41:



Cara 1

2^x - 1/16^x = 0
2^x - 2^-4x = 0
2^x = 2^-4x

Bandingkn indeks,

x=-4x
x=0

Cara 2

2^x - 1/16^x = 0
2^x  ...



saya tak fahamlah cara ni....both actually...
sampai sini saya faham...
2^x - 1/16^x = 0
2^x - 2^-4x = 0
2^x = 2^-4x

and then...macam mana nak bandingkan indeks...sorrylah a bit slow.
Reply

Use magic Report

Post time 7-5-2005 08:00 PM | Show all posts

ada banyak soalan nak tanya ni...tolonglah

Saya dah usaha tapi still tak dapat.

1) Diberi g(x)=3x+2 dan gf(x)=11-3x. Hitungkan nilai-nilai w jika fg(w^2+2)=7x-11.

2) Diberi p dan p+3 ialah punca-punca persamaan kuadratik 2x^2 +14x +k =0. Cari nilai pdan k.

3) Satu drp punca persamaan 2x^2+12x=6k-1 ialah 2 kali yang satu lagi dgn keadaan k adalah pemalar. Cari punca-punca tersebut dan nilai k.

4) Diberi garis lurus y=x+c dan lengkungan y=2x^2-3x+1. Cari julat nilai c jika garis lurus itu tdk memotong lengkungan tersebut.

5) Tunjukkan bahawa punca-punca persamaan kuadratik kx^2-(2k+3)x+3=0 adalah nyata dan berbeza utk semua nilai k.
Reply

Use magic Report

Post time 7-5-2005 08:01 PM | Show all posts
Originally posted by BeanDiesel at 5-6-2005 14:01:
2* 5^x = 3^(x - 1)

2* 5^x = 3^x / 3^1
           = 3^x/ 3

2* 3 = 3^x / 5^x
    6  = (3/5)^x

log(6)=log ( (3/5)^x )
        =x log (3/5)

x= log (6) / log (3/5)

x is about -3.50758. ...


this one is easy to understand. thanks beandiesel
Reply

Use magic Report

Post time 7-5-2005 09:07 PM | Show all posts
Originally posted by ash_ikin at 7-5-2005 03:54 AM:



saya tak fahamlah cara ni....both actually...
sampai sini saya faham...
2^x - 1/16^x = 0
2^x - 2^-4x = 0
2^x = 2^-4x

and then...macam mana nak bandingkan indeks...sorrylah a bit slow.

Cara 1

2^x - 1/16^x = 0
2^x - 2^-4x = 0
2^x = 2^-4x

Bandingkn indeks,

x=-4x
x=0


2^x = 2^-4x

A^b, so index A ialah b
so index equation tu adalah x dan -4x, and since A di kedua dua belah persamaan tu adalah 2, ko cuma perlu bandingkan index dia jek.

bukti dia,
2^x = 2^-4x
so log 2^x = log 2^-4x
    x log 2 = -4x log 2 <--- bahagi kedua dua belah equation dengan log 2,
  x=-4x

just bandingkan x=-4x

nilai x yang akan memuaskan persamaan ni hanyalah x=0, since 0=-4(0)
Reply

Use magic Report

Post time 7-5-2005 09:25 PM | Show all posts
1) Diberi g(x)=3x+2 dan gf(x)=11-3x. Hitungkan nilai-nilai w jika fg(w^2+2)=7x-11.


ni aku tak sure. jawapan dia w tu same dengan some x ke atau ade value?
Reply

Use magic Report

Post time 7-5-2005 09:41 PM | Show all posts
2) Diberi p dan p+3 ialah punca-punca persamaan kuadratik 2x^2 +14x +k =0. Cari nilai pdan k.


2x^2 +14x +k =0
= x^2 + 7x + (k/2) ....(1)


ok, now p dan p+3 adalah punca persamaan quardratic. so kite boleh tulis p dan p+3 camni,

(x - p) (x - [p+3]) = 0 = x^2 + 7x + (k/2)      <-- perhatikan dalam (x - p) (x - [p+3]) , gandaan x ialah 1, dan dalam persamaan kuardratik tu, gandaan x^2 ialah satu. so senang la nak compare kedua dua equation ni.


so, kembangkan (x - p) (x - [p+3])

= x^2 - x(p+3) - px + p(p+3)

= x^2 - x(p+3+p) + (p^2 + 3p)     

=x^2 - x(2p+3) + (p^2 + 3p).....(2)

bandingkan (1) & (2)

x^2 - x(2p+3) + (p^2 + 3p) = x^2 + 7x + (k/2)

so kite boleh dapat dua equation dari sini

1) -x(2p+3) = 7x  <--cancel x from both sides
     -(2p+3) = 7
p = -5


2) (p^2 + 3p) = k/2

k = 2(p^2 + 3p)  <--masukkan nilai p yang kite dapat tadi

k = 20

[ Last edited by BeanDiesel on 7-5-2005 at 10:25 PM ]
Reply

Use magic Report


ADVERTISEMENT


Post time 7-5-2005 09:46 PM | Show all posts
3) Satu drp punca persamaan 2x^2+12x=6k-1 ialah 2 kali yang satu lagi dgn keadaan k adalah pemalar. Cari punca-punca tersebut dan nilai k.

yang ni lebih kurang ngan soklan 2). beza nya ialah, salah satu punca ialah p dan salah satu punca ialah 2p. ringkaskan persamaan kuardratik tu dalam format x^2 + bx + c = 0 supaya senang sket nak compare ngan (x - p)(x-2p)

try la. kalo ade problem just let us know.
Reply

Use magic Report

Post time 7-5-2005 09:51 PM | Show all posts
) Diberi garis lurus y=x+c dan lengkungan y=2x^2-3x+1. Cari julat nilai c jika garis lurus itu tdk memotong lengkungan tersebut.

eer, julat tu ape ye? aku dah lupa la. tau tak english translation utk julat.
Reply

Use magic Report

Post time 7-5-2005 10:01 PM | Show all posts
5) Tunjukkan bahawa punca-punca persamaan kuadratik kx^2-(2k+3)x+3=0 adalah nyata dan berbeza utk semua nilai k.


Theorem:
for   ax^2 + bx + c = 0

b^2 - 4ac > 0 punca punca nyata dan berbeza
b^2 - 4ac = 0, punca punca nyata tapi sama
b^2 - 4ac < 0, punca punca tak nyata  (no complex, nanti komdian korang blaja)



kx^2 -(2k+3)x + 3=0

a= k
b= -(2k + 3)
c=3

so, b^2 - 4ac = (2k+3)^2 - 4(k)(3)

= 4k^2  + 12k + 9 - 12k

=4k^2 + 9 <-- sentiasa lebih besar dari 0 sebab ape ape nombor kalau kuasa dua mesti jadi positive

so, b^2 - 4ac = 4k^2 + 9 > 0, maka punca punca nyata dan berbeza bagi ape ape nilai k.

[ Last edited by BeanDiesel on 7-5-2005 at 06:05 AM ]
Reply

Use magic Report

Post time 7-5-2005 11:48 PM | Show all posts
Originally posted by ash_ikin at 7-5-2005 07:54 PM:



saya tak fahamlah cara ni....both actually...
sampai sini saya faham...
2^x - 1/16^x = 0
2^x - 2^-4x = 0
2^x = 2^-4x

and then...macam mana nak bandingkan indeks...sorrylah a bit slow.



Bandingkan indeks tu maksudnyer bandingkan dia punya kuasa tapi dgn syarat asas tu mesti sama... cthnya mcm kat atas nilai asas sama kat both sides. Yg lain2 tu beandiesel dah terang. Trimas! Beandiesel
Reply

Use magic Report

You have to log in before you can reply Login | Register

Points Rules

 

ADVERTISEMENT



 

ADVERTISEMENT


 


ADVERTISEMENT
Follow Us

ADVERTISEMENT


Mobile|Archiver|Mobile*default|About Us|CariDotMy

25-11-2024 05:56 AM GMT+8 , Processed in 0.046396 second(s), 27 queries , Gzip On, Redis On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

Quick Reply To Top Return to the list