|
Soalan berkaitan Matematik & Matematik Tambahan
[Copy link]
|
|
Aku dah kopak monitor nie sampai belakang pon tak jumpa2 lagik tangan ko...?? Ko silap antar alamat kot....?? :lol |
|
|
|
|
|
|
|
so, ade ape ape lagi soklan yang kite leh bincang? |
|
|
|
|
|
|
|
terernye beandiesel nih... cikgu ek... ke lect?
aku yg terer math pon tetiba cam lembab... |
|
|
|
|
|
|
|
aku tengah tercungap cungap abiskan degree ni. tapi bile balik mesia nanti, aku ingat nak gak gi skola rendah aku dulu, jadi cikgu sandaran setaun ke. hmm... |
|
|
|
|
|
|
ancoi This user has been deleted
|
Soalan Janjang!
Ali memasukkan wangnya ke dalam bank setiap awal tahun sebanyak RM 1000 selama 10 tahun dengan kadar faedah 5% setahun. Berapakah jumlah wang terkumpul dalam bank pada akhir tahun ke 10? |
|
|
|
|
|
|
|
pergh, susah siot soklan ni. level SPM ke.
meh aku try.
katakan starting duit dalam bank RM0
D=RM1000 <----duit yang di masukkan setiap awal taun
k=5% = 0.05 <----kadar peningkatan setiap akhir taun
J(n)= jumlah terkumpul bagi tahun ke-n
J(1)= 1000+ 1000*0.05 = 1000*(1+k) =1000 * 1.05 = D * a (where a=1.05)
J(2) = [J(1) + D]*a = Da^2 + Da = Da^2 + Da = D *(a^2 + a)
J(3) = [J(2) + D] *a = [D*(a^2+a)]*a= Da^3 + Da^2 + Da = D (a^3 + a^2 + a)
pattern dia, J(n)=D sigma(n, n=1) a^n
or J(n)=RM1000 sigma(n,n=1) 1.05^n
kalo sepuluh taun, J(10)= RM1000 sigma (10,n=1) 1.05^n
J(10)= RM 13 206. 79
masaelahnya, aku tak sure cammana nak simplify lagi sigma (n, n=1) 1.05^n. aku kira pakai scientific calculator, ok lagi ( tu pon sebab n=10, kalo seratus mati aku). kalo pakai calculator level SPM sakit woo. lagipon ni kira divergent series, so sum dia pon divergent, maknanya membesar tanpa had.
aku takde idea. ade sesapa leh kasi cadangan yang lebih bernas? sila sila. |
|
|
|
|
|
|
ancoi This user has been deleted
|
Jawapan die dah betul. Pattern die...
Let
D = RM 1000
i = 5%
n = 10
FV = jumlah terkumpul.
Formula:-
FV = D*(1+i)+D*(1+i)^2+...+D*(1+i)^n
= D*[(1+i)+(1+i)^2+...+(1+i)^n] {siri geometri}
:
:
= D *(1+i)*[(1+i)^n - 1]/i {H/work:- cuba buktikan ungkapan ini}
:
:
:
FV = RM 13,206.79
Selamat berjaya! |
|
|
|
|
|
|
|
Originally posted by ancoi at 28-5-2005 06:53 PM:
Jawapan die dah betul. Pattern die...
Let
D = RM 1000
i = 5%
n = 10
FV = jumlah terkumpul.
Formula:-
FV = D*(1+i)+D*(1+i)^2+...+D*(1+i)^n
= D*[(1+i)+(1+i)^2+...+(1+i)^n] {siri ...
ooh, aku actually cuba nak ungkapkan persamaan tu dalam sebutan yang singkat so that we can just plug in the numbers and get the answer, no matter how big n is. so memang kena wat satu satu ye? it makes sense though, sebab series tu divergent kan?
thanks a lot. that's a good input.:tq: |
|
|
|
|
|
|
ancoi This user has been deleted
|
Originally posted by BeanDiesel at 06:31 PM:
ooh, aku actually cuba nak ungkapkan persamaan tu dalam sebutan yang singkat so that we can just plug in the numbers and get the answer, no matter how big n is. so memang kena wat satu satu y ...
had FV = INFINITI
n->infiniti
Series tu memang divergent:ah:
:cak:Aaa... kawan-kawan, kalau nak tau, janjang tu banyak gunanya dalam harian kite... kalau nak buat projection kira hutang rumah kita pun pakai skill janjang tau! |
|
|
|
|
|
|
|
Originally posted by ancoi at 5/2005/28 02:11 PM:
Soalan Janjang!
Ali memasukkan wangnya ke dalam bank setiap awal tahun sebanyak RM 1000 selama 10 tahun dengan kadar faedah 5% setahun. Berapakah jumlah wang terkumpul dalam bank pada akhir tahu ...
cuba dolo |
|
|
|
|
|
|
ancoi This user has been deleted
|
Okay... ade sesape dapat buktikan ungkapan yang aku suruh buat tuh?
FYI,
FV = D *(1+i)*[(1+i)^n - 1]/i memang satu ungkapan ringkas.
kita just masukkan D = 1000, i = 5% and n = 10 dalam ungkapan tu...
[ Last edited by ancoi on 31-5-2005 at 06:53 AM ] |
|
|
|
|
|
|
buyaogaosuni This user has been deleted
|
Originally posted by ancoi at 30-5-2005 08:13 PM:
Okay... ade sesape dapat buktikan ungkapan yang aku suruh buat tuh?
FYI,
FV = D *(1+i)*[(1+i)^n - 1]/i memang satu ungkapan ringkas.
kita just masukkan D = 1000, i = 5% and n = ...
Guna formula Sn=a(r^n-1)/(r-1) where a=D , r=1+i |
|
|
|
|
|
|
ancoi This user has been deleted
|
Originally posted by buyaogaosuni at 11:03 AM:
Guna formula Sn=a(r^n-1)/(r-1) where a=D , r=1+i
Formula tu dah ade... cuma ade sikit modification... |
|
|
|
|
|
|
ancoi This user has been deleted
|
Orait! Jawapannye bole kata beginilah...
FV = D*(1+i)+D*(1+i)^2+...+D*(1+i)^n
= D*[(1+i)+(1+i)^2+...+(1+i)^n]
= D*(1+i)*[1+(1+i)+(1+i)^2+...+(1+i)^(n-1)]
= D*(1+i)*(r^n-1)/(r-1)
= D*(1+i)*((1+i)^n-1)/(1+i-1)
where r = 1+i
So,
FV = D*(1+i)*((1+i)^n-1)/i
Adios...
Lepas nie nak tanye soalan berkaitan pinjaman bank lak... |
|
|
|
|
|
|
|
Originally posted by ancoi at 1-6-2005 05:21 AM:
Orait! Jawapannye bole kata beginilah...
FV = D*(1+i)+D*(1+i)^2+...+D*(1+i)^n
= D*[(1+i)+(1+i)^2+...+(1+i)^n]
= D*(1+i)*[1+(1+i)+(1+i)^2+...+(1+i)^(n-1)]
= D*(1+i)*(r^n-1)/(r-1 ...
thanks a lot. :tq: |
|
|
|
|
|
|
|
Cuba buktikan / Tunjukkan
1/log(asas a)abc + 1/log(asas a)abc + 1/log(asas a)abc = 1 |
|
|
|
|
|
|
|
vektor
bleh tak tlg jwbn solan nie....
diberi u=(12) dan v=(2) u dan v adlh selari cari nilai p
~ (-5) ~ (p)
tlg jwbn yer...puas cari jwpn tak jumpa ar... guna rumus a=kb bleh ker dpt jwpn? |
|
|
|
|
|
|
|
Tolong...prof mathematik sekalian...
Nie mungkin bukan soalan add math, mungkin hanya math biasa, tapi tak leh dapat jawapannya... saper bleh tolong??
Nie perbualan antara Mr. Lim ngan Mrs. Chong
Mr. Lim : I have 3 children. The products of my children ages is 72 and the sum of their numbers is same as my number of house. What is my children ages?
Mrs Chong pon keluar tengok no rumah Mr Lim.
Mrs Chong : I still cannot guess it
Mr Lim: I give a small hint. My eldest child like to eat vanilla ice-cream.
Soalannya : Berapakah no rumah Mr. Lim dan berapakah umur anaknya?
Saper bleh tolong... please!!! |
|
|
|
|
|
|
|
Originally posted by tipahditipu at 10-7-2005 12:41 AM:
bleh tak tlg jwbn solan nie....
diberi u=(12) dan v=(2) u dan v adlh selari cari nilai p
~ (-5) ~ (p)
tlg jwbn yer...puas cari jwpn tak jumpa ar... guna rumus a=kb ...
i dont really understand ur notation.
u=12i - 5j and v=2i + pj ke?
kalo betul la,
kalo nak buktikan dia selari, cross product u ngan v mesti 0.
so, u X v = 12p + 10 = 0
p= -10/12 = -5/6 |
|
|
|
|
|
|
|
Originally posted by Eastern at 11-7-2005 05:52 PM:
Nie mungkin bukan soalan add math, mungkin hanya math biasa, tapi tak leh dapat jawapannya... saper bleh tolong??
Nie perbualan antara Mr. Lim ngan Mrs. Chong
Mr. Lim : I have 3 children. ...
aku ade 4 variable dua equation jek. since aku tak paham hint ni
Mr Lim: I give a small hint. My eldest child like to eat vanilla ice-cream.
tak dapat la nak solve. |
|
|
|
|
|
|
| |
Category: Belia & Informasi
|